If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2+w-4=0
a = 3; b = 1; c = -4;
Δ = b2-4ac
Δ = 12-4·3·(-4)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-7}{2*3}=\frac{-8}{6} =-1+1/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+7}{2*3}=\frac{6}{6} =1 $
| (x+3)/2=(x-3)/6 | | 14x^2-2=36 | | 8x+12=21-3x | | 8x-12=21-3x | | x+3=2x-1=10 | | 5.3=7.7-0.3x | | 1-5p+3=9 | | 11x+7x+2=19x-4 | | -136=-8(-2a+3) | | 12+12b= −12−12 | | 8(r+1)=144 | | x+2=(3x^2)+17x+20 | | x.x+3.17=12.08 | | (1/2)(3/2y+(1/3))=(-1/2)(y-(5/2)) | | 6=-3(x+2)=-4 | | 6x+8=2×-12 | | -1=3r+2r=1 | | 13x^2+27x+14x=0 | | n-7=3+3n | | 2x+88=9x+11 | | 3^x+1+18/3^x=29 | | 17x+1+20=21x-3 | | X+1.1=3.6+y | | X=2.5+y | | −3(−2y−4)−5y−2= | | 10+5x+85=17x+11 | | X+(x+1)+(x+2)=143 | | 11x-1+13x+7=126 | | -12=3-2k-3k=3 | | 5x+1=- | | -3-7x=7-5x | | 48+6x+8=11x+6 |